

Physical transport of *Corbicula fluminea* in Lake Tahoe, CA-NV USA

A.L. Forrest, T. Mathis, A. Hoyer, M.E. Wittmann, and S.G. Schladow

Lake Tahoe

- > 501 m maximum depth
- > 650 year residence time
- > 500 km² surface area
- > 116 km of shoreline
- > Ultra-oligotrophic

Corbicula fluminea

- Adults
 grow up to
 2.7 cm in
 Tahoe
- First noted in 2002
- Significant populations seen in 2008

Nevada Beach

- Majority of clams found in SE part of lake
- Distributed from
 2 40 m depth
- In Nevada Beach
 found as deep as
 70 m

Experimental Set-up

- 2 observation stations located on the
 25 m and 50 m isobaths:
 - 1200 kHz RDI ADCP and 15 T1060 thermistor chain
 - 600 kHz RDI ADCP and 9 T1060 thermistor chain
- Observation periods from September –
 December, 2010 and January March,
 2011

25 m Velocity Record

RESEARCH CENTER

Fall Stratification

Weakening Stratification

- Seasonal thermocline weakens and deepens over time
- All periods show dominant NW current
- Peak horizontal velocity of 25 cm/s
- Peak vertical velocity of -3 cm/s

Density Current Formation?

Peak heat flux (> 500 W/m²) resulting from large solar radiative input

 Low correlation with observed currents
 UCDAVIS TAHOE ENVIRONMENTAL RESEARCH CENTER

Weather Data

Observed currents (> 10 cm / s) were associated with SW winds

Lasted from 2 – 7 days

Flow to Depth (50 m)

RESEARCH CENTER

Forcing and Response

- Forcing generates NW along-shore currents
- Currents result in clam shell matter transport
- Matter collects in the bottom bed form features
- > Are LIVE clams moved?

Two Modes of Dispersal

- Pediveligers can remain pelagic for up to 2 days
- Potential dispersal via currents

Science, New Series (1984), 225 (4669): 1491 - 1493

Flume Experiment

- Current experimentation is using a flume 0.15 m wide by 1.5 m long
- Velocities ranged from 0 25 cm/s
- Clams ranged in size from 5 20 mm
- Operating temperature of lake water being recycled through the flume was 15 – 20 °C

Flume Results

Transport observed for most velocities

Once burrowed clams would cease to be transported

Requires stressors to drive clams to surface

Clam Shell Size [mm] *Physical Transport of C. fluminea*

Conclusions

- Study demonstrates strong currents from Sept – April with near-bed currents strongest in the fall
- Strong horizontal component with a downwards vertical component
- Potential mode of transport for clams and shell matter from shallow water to depth

Acknowledgements

Funding and support for this project was made possible from the Tahoe Region Planning Agency, Tahoe Resource Conservation District, and the California Tahoe Conservancy